Sains Malaysiana
53(4)(2024):
881-892
http://doi.org/10.17576/jsm-2024-5304-12
Evaluating
the Cytotoxic Activity of Lactobacillus
plantarum IIA-1A5 against MCF-7 Human Breast Cancer Cells and Identifying
Its Surface Layer Protein Gene
(Menilai
Aktiviti Sitotoksik Lactobacillus plantarum IIA-1A5 terhadap Sel Kanser
Payudara Manusia MCF-7 dan Mengenal Pasti Gen Protein Lapisan Permukaannya)
REZA ADIYOGA1, CAHYO BUDIMAN1, ZAENAL
ABIDIN2, KAZUHITO FUJIYAMA3& IRMA ISNAFIA
ARIEF1,*
1Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Jl. Agatis Kampus IPB Dramaga, Bogor 16680, Indonesia
2Department of Chemistry, Faculty of
Mathematics and Natural Sciences, IPB University, Jl. Agatis Kampus IPB Dramaga, Bogor 16680, Indonesia
3International Center for
Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871, Japan
Received: 4 June 2023/Accepted: 28 February 2024
Abstract
Breast cancer is a serious global health concern, with a high mortality
rate worldwide. Using natural compounds as potential cancer therapies is a
promising approach to address this issue. Previous research has shown that
probiotic lactic acid bacteria (LAB) and their metabolites, such as surface
layer protein (slp), have a positive
impact on a variety of health disorders, including cancer. The purpose of this
study was to evaluate the ability of Lactobacillus plantarum IIA-1A5 to
suppress the growth of the MCF-7 breast cancer cell line and detect the
presence of the slp gene.
Intracellular and extracellular protein fractions were isolated from L.
plantarum IIA-1A5 cultures. The protein concentrations and molecular
weights of the extracts were measured. The anticancer activity of the extracts
was assessed using the MTT cytotoxicity test, and IC50 values were
calculated. The slp gene was identified through polymerase chain
reaction (PCR) amplification and nucleotide sequencing. The results
demonstrated that L. plantarum IIA-1A5 had a concentration-dependent
inhibitory effect on MCF-7 breast cancer cells, with IC50 values of
6.831 and 12.35 μg/mL for intracellular extracts and extracellular
extracts, respectively. Additionally, PCR amplification and nucleotide
sequencing confirmed the presence of the slp gene, which may contribute to the strain’s anticancer abilities. These findings
suggest the potential of L. plantarum IIA-1A5 as a natural anticancer
agent against MCF-7 breast cancer cells. Further research is warranted to
elucidate the underlying mechanisms of L. plantarum IIA-1A5 in breast
cancer treatment.
Keywords: Anticancer; breast cancer; lactic
acid bacteria; MCF-7; slp gene
Abstrak
Kanser payudara merupakan isu kesihatan global utama dengan kadar
kematian yang tinggi di seluruh dunia. Penggunaan sebatian semula jadi sebagai
terapi kanser merupakan strategi yang berpotensi untuk menangani isu ini.
Kajian terdahulu telah mencadangkan bahawa bakteria asid laktik probiotik (LAB)
dan metabolitnya seperti protein lapisan permukaan (slp) telah
menunjukkan kesan yang baik terhadap pelbagai keadaan kesihatan, termasuk
kanser. Kajian ini bertujuan untuk menyelidik potensi Lactobacillus
plantarum IIA-1A5 dalam menghalang pertumbuhan sel kanser payudara MCF-7
dan mengenal pasti kehadiran gen slp. Fraksi protein intrasel dan
ekstrasel diekstrak daripada kultur L. plantarum IIA-1A5. Konsentrasi
protein dan berat molekul ekstrak dianalisis. Aktiviti antikanser ekstrak
dinilai menggunakan ujian sitotoksik MTT dan nilai IC50 ditentukan.
Amplifikasi rantai polimerase (PCR) dan penjujukan nukleotida dilakukan untuk
mengenal pasti gen slp. Hasil kajian menunjukkan bahawa L. plantarum IIA-1A5 menunjukkan kesan perencatan yang bergantung kepada kepekatan ke atas
sel kanser payudara MCF-7, dengan nilai IC50 6.831 μg/mL untuk
ekstrak intrasel dan 12.35 μg/mL untuk ekstrak ekstrasel. Kehadiran gen slp disahkan dalam strain tersebut melalui amplifikasi PCR dan penjujukan
nukleotida. Penemuan ini menunjukkan potensi L. plantarum IIA-1A5 sebagai
agen antikanser semula jadi untuk rawatan kanser payudara MCF-7. Gen slp yang dikenal pasti mungkin menyumbang kepada aktiviti antikanser strain
tersebut. Penyelidikan lanjut diperlukan untuk memahami mekanisme asas L.
plantarum IIA-1A5 dalam rawatan kanser payudara.
Kata kunci: Antikanser; bakteria asid laktik;
gen slp; kanser payudara; MCF-7
REFERENCES
Adiyoga, R., Arief, I.I.,
Budiman, C. & Abidin, Z. 2022. In vitro anticancer potentials of Lactobacillus
plantarum IIA-1A5 and Lactobacillus acidophilus IIA-2B4 extracts
against WiDr human colon cancer cell line. Food Sci. Technol. 42:
e87221.
Alp, D., Kuleaşan, H. & Altıntaş, A.K. 2020. The
importance of the S-layer on the adhesion and aggregation ability of lactic
acid bacteria. Mol. Biol. Rep. 47: 3449-3457.
Aragón, F., Carino, S., Perdigón, G. & de Moreno de LeBlanc, A. 2015. Inhibition of growth and metastasis of
breast cancer in mice by milk fermented with Lactobacillus casei CRL
431. Journal of Immunotherapy 38(5): 185-196.
Arief, I.I., Jenie, B.S.L.,
Astawan, M., Fujiyama, K. & Witarto, A.B. 2015. Identification and
probiotic characteristics of lactic acid bacteria isolated from Indonesian
local beef. Asian J. Anim. Sci. 9:
25-36.
Arief, I.I., Jakaria, Suryati, T., Wulandari, Z. & Andreas, E. 2013. Isolation and characterization of plantaricin
produced by Lactobacillus plantarum strains (IIA-1A5, IIA-1B1, IIA-2B2). Media Peternakan 36: 91-100.
Atjanasuppat, K., Wongkham, W.,
Meepowpan, P., Kittakoop, P., Sobhon, P., Bartlett, A. & Whitfield, P.J. 2009. In vitro screening for anthelmintic and
antitumour activity of ethnomedicinal plants from Thailand. J.
Ethnopharmacol. 123: 475-482.
Aykul, S. & Martinez-Hackert,
E. 2016. Determination of half-maximal inhibitory concentration using
biosensor-based protein interaction analysis. Anal. Biochem. 508:
97-103.
Bradford, M.M. 1976. A rapid
and sensitive method for the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding. Analyt. Biochem. 72:
248-254.
Birnboim, H.C. & Doly, J. 1979. A
rapid alkaline extraction procedure for screening recombinant plasmid
DNA. Nucleic Acids Res. 7: 1513-1523.
Boot, H.J., Kolen, C.P.A.M., van Noot, J.M. & Pouwels, P.H. 1993. S-layer proteins of Lactobacillus acidophilus ATCC 4356: purification, expression in Escherichia coli and nucleotide sequence of the corresponding gene. Journal of Bacteriology. 175: 6089-6096.
Cao, J., Zhang, M., Wang, B.,
Zhang, L., Fang, M. & Zhou, F. 2021. Chemoresistance and metastasis in
breast cancer molecular mechanisms and novel clinical strategies. Front.
Oncol. 11: 658552.
Chen, X., Xu, J., Shuai, J., Chen, J.,
Zhang, Z. & Fang, W. 2007. The S-layer proteins
of Lactobacillus crispatus strain ZJ001 is responsible for
competitive exclusion against Escherichia coli O157: H7
and Salmonella typhimurium. Int. J. Food Microbiol. 115:
307-312.
Dennert, G. & Horneber, M. 2006. Selenium for alleviating the side effects of
chemotherapy, radiotherapy and surgery in cancer patients. Cochrane Database
Syst. Rev. 2006(3): CD005037.
Ding, C., Tang, W., Fan, X. & Wu, G. 2018. Intestinal microbiota: A novel perspective in colorectal cancer biotherapeutics. OncoTargets
and Therapy 11: 4797-4810.
Dolati, M., Tafvizi, F.,
Salehipour, M., Movahed, T.K. & Jafari, P. 2021. Inhibitory effects of
probiotic Bacillus coagulans against MCF7 breast cancer cells. Iran
J. Microbiol. 13(6): 839-847.
Ford, M.J., Normellini, J.F.
& Smit, J. 2007. S-layer anchoring and localization of an S-layer-associated protease in Caulobacter crescentus. Journal of Bacteriology 189(6):
2226-2237.
Gupta, R., Jeevaratnam, K.
& Fatima, A. 2018. Lactic acid bacteria: Probiotic characteristic,
selection criteria, and its role in human health (A review). Journal of
Emerging Technologies and Innovative Research 5(10): 411-424.
Harbeck, N., Penault-Llorca,
F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., Ruddy, K., Tsang, J.
& Cardoso, F. 2019. Breast cancer. Nat. Rev. Dis. Primers 5: 66.
Laemmli, U.K. 1970. Cleavage
of the structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680-685.
Li, P., Yin, Y., Yu, Q. &
Yang, Q. 2011. Lactobacillus acidophilus S-layer protein-mediated
inhibition of Salmonella-induced apoptosis in Caco-2 cells. Biochem.
Biophys. Res. Commun. 409(1): 142-147.
Liu, C.F. & Pan,
T.M. 2010. In vitro effects of lactic acid bacteria on cancer cell
viability and antioxidant activity. Journal of Food and Drug Analysis 18(2): 77-86.
Liu, C., Zheng, J.,
Ou, X. & Han, Y. 2021.
Anticancer substances and safety of lactic acid bacteria in clinical treatment. Frontiers in Microbiology 12: 722052.
Luqmani, Y.A. 2005. Mechanisms
of drug resistance in cancer chemotherapy. Med. Princ. Pract. 14:
35-48.
Mathur, H., Beresford, T.P. & Cotter, P.D. 2020. Health
benefits of lactic acid bacteria (LAB) fermentates. Nutrients 12(6): 1679.
Meng, J., Zhang, Q.X. & Lu, R.R. 2018. Identification and analysis of the function of surface layer
proteins from three Lactobacillus strains. Ann.
Microbiol. 68: 207-216.
Meng, J., Zhu, X., Gao, S.M., Zhang, Q.X.,
Sun, Z. & Lu, R.R. 2014. Characterization of
surface layer proteins and its role in probiotic properties of three Lactobacillus strains. Int. J. Biol. Macromol. 65: 110-114.
Ningtiyas, W.D., Arief, I.I., Budiman, C. & Utomo, A.R.H. 2021. Inhibition of human cervical cancer Hela cell
line by meat-derived lactic acid bacteria of Lactobacillus plantarum IIA-1A5
and Lactobacillus acidophilus IIA-2B4. Pak. J. Biol. Sci. 24: 1340-1349.
Nogueira, T., Touchon, M. & Rocha, E.P.C. 2012. Rapid evolution of the sequences and gene
repertoires of secreted proteins in bacteria. PLoS ONE 7(11): e49403.
Nowak, A., Paliwoda, A. & Blasiak, J. 2019. Anti-proliferative, pro-apoptotic and
anti-oxidative activity of Lactobacillus and Bifidobacterium strains:
A review of mechanisms and therapeutic perspectives. Crit. Rev. Food Sci.
Nutr. 59: 3456-3467.
Nowroozi, J., Mirzaii, M. & Norouzi, M. 2004. Study of Lactobacillus as probiotic bacteria. Iranian J. Publ. Health. 33: 1-7.
Oskoueian, E., Abdullah, N., Saad, W.Z.,
Omar, A.R., Kuan, W.B., Zolkifli, N.A., Hendra, R. & Ho, Y.W. 2011. Antioxidant, anti-inflammatory and anticancer activities of
methanolic extracts from Jatropha curcas Linn. J. Med.
Plants Res. 5: 49-57.
Paiva, A.D., Oliveira,
M.D., Paula, S.O., Baracat-Pereira, M.C., Breukink, E. & Mantovani, H.C. 2012. Toxicity of bovicin HC5 against
mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology 158(11): 2851-2858.
Ren, W., Qiao, Z., Wang, H., Zhu, L. & Zhang, L. 2003. Flavonoids: Promising anticancer agents. Medicinal Research Reviews 23: 519-534.
Sahlan, M., Azizah, N., Hakamada, K.,
Noguchi, K. & Yohda, M. 2018. Isolation and molecular weight
characterization of Tetragonula laeviceps honey protein. Makara
Journal of Technology 22(1): 9-12.
Sára, M. & Sleytr, U.B. 2000. S-layer proteins. J. Bacteriol. 182: 859-868.
Steel, R.G.D., Torrie, J.H.
& Dickey, D.A. 1997. Principles and Procedures of Statistics, A
Biometrical Approach. 3rd ed. New York: McGraw-Hill.
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71: 209-249.
Waks, A.G. & Winer, E.P.
2019. Breast cancer treatment: A review. JAMA 321: 288-300.
Zhang, T., Pan, D.,
Yang, Y., Jiang, X., Zhang, J., Zeng, X., Wu, Z., Sun, Y. & Guo, Y. 2020. Effect of Lactobacillus acidophilus CICC
6074 S-layer protein on colon cancer HT-29 cell proliferation and apoptosis. Journal
of Agricultural and Food Chemistry 68(9): 2639-2647.
*Corresponding
author; email: isnafia@apps.ipb.ac.id
|